

Monitoring S-wave velocity of the ground using continuous seismic ambient noise measurements

AGS (HK) Technical Seminar

Koichi Hayashi OYO Corporation/Geometrics

Outline

- Active and passive surface wave methods
- 3D ambient noise tomography
- Cableless seismograph for continuous monitoring
- Application to full-size test embankment
- Application to tunnel construction by tunnel boring machine
 - Iterative 3D ambient noise tomography
 - Numerical simulation by 3D finite-difference method
 - Continuous 1D monitoring
- Continuous 3D monitoring for tunnel construction by tunnel boring machine
- Conclusions

Outline

- Active and passive surface wave methods
- 3D ambient noise tomography
- Cableless seismograph for continuous monitoring
- Application to full-size test embankment
- Application to tunnel construction by tunnel boring machine
 - Iterative 3D ambient noise tomography
 - Numerical simulation by 3D finite-difference method
 - Continuous 1D monitoring
- Continuous 3D monitoring for tunnel construction by tunnel boring machine
- Conclusions

Seismic waves

compressions

P wave

- Body waves
 P-wave
 - S-wave
- Surface-waves
 Rayleigh-wave

Love-wave

Double Amplitud Navelength Rayleigh wave

Rayleigh wave vibrates both vertical and horizontal direction. Love wave only vibrate horizontal direction.

Seislmager.com

In surface wave methods, we usually only use Rayleigh waves since vertical motion only contains Rayleigh waves

Monitoring S-wave velocity of the ground using continuous seismic ambient noise measurements

Undisturbed medium

Phase velocity depends on frequency \Rightarrow Dispersion

Dispersion curve and its analysis SeisImager.com

MASW (Fourier decomposition)

Estimating an initial velocity model in terms of 1/3 wave-length theory

Depth=Phase-velocity/Frequency/3

Active and passive surface waves

Monitoring S-wave velocity of the ground using continuous seismic ambient noise measurements

SeisImager.com

Active and passive surface waves SeisImager.com

Active and passive surface waves

Active and Passive Surface Wave Methods

How to calculate propagation velocity from ambient noise?

Cross correlation of ambient noise

Cross correlation of ambient noise

Active and passive surface-wave methods SeisImager.com

Outline

- Active and passive surface wave methods
- 3D ambient noise tomography
- Cableless seismograph for continuous monitoring
- Application to full-size test embankment
- Application to tunnel construction by tunnel boring machine
 - Iterative 3D ambient noise tomography
 - Numerical simulation by 3D finite-difference method
 - Continuous 1D monitoring
- Continuous 3D monitoring for tunnel construction by tunnel boring machine
- Conclusions

Conventional spatial autocorrelation (SPAC) for 1D S-wave velocity investigation

Data acquisition geometry

Dispersion (phase velocity) curve

Monitoring S-wave velocity of the ground using continuous seismic ambient noise measurements

Seislmager.com

Concept of 3D passive surface wave method SeisImager.com (Ambient Noise Tomography : ANT) based on CMP-SPAC

3D Bedrock Investigation at Singapore

Monitoring S-wave velocity of the ground using continuous seismic ambient noise measurements

Seislmager.com

Investigation purposes

Granite Hills

Delineate the depth to GII to estimate volume to blast and length of piles

Acquisition geometry

- In order to delineate depth to a bedrock (GII), ambient noise tomography (3D passive surface wave method) was carried out.
- Investigation area is 700 X 430 m.
- 70 sensors were deployed with 7 m spacing.
- 133 arrays with overlap were measured and total sensor location is approximately 2300.

Fieldwork

Examples of CMP-SPAC and phase velocity image

Monitoring S-wave velocity of the ground using continuous seismic ambient noise measurements

37 borehole at the site

S-wave velocity at GII confirmed by boring

Monitoring S-wave velocity of the ground using continuous seismic ambient noise measurements

Depth to bedrock (GII)

Comparison of bedrock (GII) depth estimated and by ambient noise tomography and boring

Monitoring S-wave velocity of the ground using continuous seismic ambient noise measurements

Bedrock (GII) elevation

Monitoring S-wave velocity of the ground using continuous seismic ambient noise measurements

Outline

- Active and passive surface wave methods
- 3D ambient noise tomography
- Cableless seismograph for continuous monitoring
- Application to full-size test embankment
- Application to tunnel construction by tunnel boring machine
 - Iterative 3D ambient noise tomography
 - Numerical simulation by 3D finite-difference method
 - Continuous 1D monitoring
- Continuous 3D monitoring for tunnel construction by tunnel boring machine
- Conclusions

Cableless seismograph

Continuous monitoring using cableless seismograph *Field*Solar battery Solar battery

Outline

- Active and passive surface wave methods
- 3D ambient noise tomography
- Cableless seismograph for continuous monitoring
- Application to full-size test embankment
- Application to tunnel construction by tunnel boring machine
 - Iterative 3D ambient noise tomography
 - Numerical simulation by 3D finite-difference method
 - Continuous 1D monitoring
- Continuous 3D monitoring for tunnel construction by tunnel boring machine
- Conclusions

Full-size test embankment

Example of phase velocity image

Monitoring S-wave velocity of the ground using continuous seismic ambient noise measurements

Time-lapse phase velocity change and daily rainfall

Comparison with tiltmeters

Monitoring S-wave velocity of the ground using continuous seismic ambient noise measurements

43

Outline

- Active and passive surface wave methods
- 3D ambient noise tomography
- Cableless seismograph for continuous monitoring
- Application to full-size test embankment
- Application to tunnel construction by tunnel boring machine
 - Iterative 3D ambient noise tomography
 - Numerical simulation by 3D finite-difference method
 - Continuous 1D monitoring
- Continuous 3D monitoring for tunnel construction by tunnel boring machine
- Conclusions

Tunnel construction site

Iterative 3D ambient noise tomography

- 1 : Before construction
- 2 : During the construction of A tunnel
- 3 : After the construction of A tunnel
- 4 : During the construction of B tunnel
- 5 : After construction

Iterative 3D ambient noise tomography

Change of dispersion curve before and after construction

OBefore construction OAfter the construction of A tunnel Change of phase velocity at the frequency of 4Hz

Outline

- Active and passive surface wave methods
- 3D ambient noise tomography
- Cableless seismograph for continuous monitoring
- Application to full-size test embankment
- Application to tunnel construction by tunnel boring machine
 - Iterative 3D ambient noise tomography
 - Numerical simulation by 3D finite-difference method
 - Continuous 1D monitoring
- Continuous 3D monitoring for tunnel construction by tunnel boring machine
- Conclusions

S-wave velocity model 65 m

Numerical simulation by 3D finite-difference method

Cell size (horizontal)	0.5 m	
Cell size (vertical)	0.5 m	0 ~ 37 m deep
Cell size (vertical)	1.0 m	37 ~ 187 m deep
Model size (W-E)	363 m	
Model size (S-N)	383 m	
Number of cells (W-E)	725	
Number of cells (S-N)	765	
Number of cells (Z)	224	
Total number of cells	124,236,000	
Time step	0.08 msec	
Number of time steps	500,000	40 sec
Max. frequency	32 Hz	

Numerical simulation by 3D finite-difference method

Before construction

After construction of A-tunnel

SeisImager.com Numerical simulation by 3D finite-difference method

Outline

- Active and passive surface wave methods
- 3D ambient noise tomography
- Cableless seismograph for continuous monitoring
- Application to full-size test embankment
- Application to tunnel construction by tunnel boring machine
 - Iterative 3D ambient noise tomography
 - Numerical simulation by 3D finite-difference method
 - Continuous 1D monitoring
- Continuous 3D monitoring for tunnel construction by tunnel boring machine
- Conclusions

Example of observed phase velocity image

Time-lapse phase velocity change

Vibration monitoring during the construction

Vibration monitoring during the construction

Outline

- Active and passive surface wave methods
- 3D ambient noise tomography
- Cableless seismograph for continuous monitoring
- Application to full-size test embankment
- Application to tunnel construction by tunnel boring machine
 - Iterative 3D ambient noise tomography
 - Numerical simulation by 3D finite-difference method
 - Continuous 1D monitoring
- Continuous 3D monitoring for tunnel construction by tunnel boring machine
- Conclusions

Continuous 3D monitoring **SeisImager.com** for tunnel construction by tunnel boring machine

105 m

Continuous 3D monitoring **SeisImager.com** for tunnel construction by tunnel boring machine

Monitoring S-wave velocity of the ground using continuous seismic ambient noise measurements

Continuous 3D monitoring **SeisImager.com** for tunnel construction by tunnel boring machine

Construction in daytime

Continuous 3D monitoring for tunnel construction by tunnel boring machine

Monitoring S-wave velocity of the ground using continuous seismic ambient noise measurements

(m/sec)

Outline

- Active and passive surface wave methods
- 3D ambient noise tomography
- Cableless seismograph for continuous monitoring
- Application to full-size test embankment
- Application to tunnel construction by tunnel boring machine
 - Iterative 3D ambient noise tomography
 - Numerical simulation by 3D finite-difference method
 - Continuous 1D monitoring
- Continuous 3D monitoring for tunnel construction by tunnel boring machine
- Conclusions

Conclusions

- S-wave velocity of ground indicates geotechnical property
- Monitoring S-wave velocity change indicates the change of geotechnical property
- Passive surface wave methods enable us to monitor S-wave velocity change non-invasively from ground surface
- Method clearly detected S-wave velocity changes associated with rain and tunnel construction
- System consisting of several sensors provides 1D averaged velocity change
- System consisting of several dozen sensors provides 3D Swave velocity change